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To compensate for the limited visual information that
can be perceived and remembered at any given
moment, many aspects of the visual world are
represented as summary statistics. We acquire
ensemble representations of element groups as a
whole, spreading attention over objects, for which we
encode no detailed information. Previous studies found
that different features of items (from size/orientation
to facial expression/biological motion) are summarized
to their mean, over space or time. Summarizing is
economical, saving time and energy when the
environment is too rich and complex to encode each
stimulus separately. We investigated set perception
using rapid serial visual presentation sequences.
Following each sequence, participants viewed two
stimuli, member and nonmember, indicating the
member. Sometimes, unbeknownst to participants, one
stimulus was the set mean, and or the nonmember was
outside the set range. Participants preferentially chose
stimuli at/near the mean, a ‘‘mean effect,’’ and more
easily rejected out-of-range stimuli, a ‘‘range effect.’’
Performance improved with member proximity to the
mean and nonmember distance from set mean and
edge, though they were instructed only to remember
presented stimuli. We conclude that participants
automatically encode both mean and range boundaries
of stimulus sets, avoiding capacity limits and speeding
perceptual decisions.

Introduction

Interacting with the environment, our visual system
is constantly confronted with a large, dynamic stream
of information that exceeds its processing capacity
(Ariely, 2001; Cohen, Dennett, & Kanwisher, 2016;
Robitaille & Harris, 2011). Unlike situations in which
we focus visual attention on one or a few objects, as
limited by the cognitive mechanisms of attention and

working memory (Cowan, 2001; Luck & Vogel, 1997),
usually we need to account for many objects con-
taining multiple properties. In particular, sometimes
we spread attention globally over a set of items with
some degree of similarity—a crowd of animals at the
safari, a shelf of alcohol bottles at a bar, a line of cars
in traffic, or a copse of trees in a forest. After looking
away from the scene, we have only limited conscious
access to information about individuals we just saw
(Fabre-Thorpe, 2011). Rather, we have a global
representation of the set as a whole (Alvarez & Oliva,
2008; Ariely, 2001; Corbett & Oriet, 2011). The visual
system maximizes the limited attentional resources
available for processing salient objects or events
(Cohen, Dennett, & Kanwisher, 2016; Jackson-Niel-
sen, Cohen, & Pitts, 2017), while maintaining the
‘‘gist’’ of the surrounding environment, the essence of
the scene (Alvarez & Oliva, 2009; Hochstein &
Ahissar, 2002). This is accomplished, in part, by
rapidly extracting sets of items, spatially and tempo-
rally, forming summarized representations (average,
range, or variance) of their features. Processing
statistical properties helps form a coherent represen-
tation of the global visual scene, circumventing the
limiting bottleneck in coding more than about four
objects for detailed conscious analysis (Cowan, 2001;
Luck & Vogel, 1997).

Summary statistics perception appears to be a
general mechanism operating on various stimulus
attributes, and may represent a different mode of visual
processing affording observers an ensemble percept and
access to information about the gist of the entire scene,
enabling them to perceive far more than a few objects
at a time, overcoming capacity limitations (Ariely,
2001; Cohen et al., 2016). Extraction occurs quickly
and perhaps automatically (i.e., without being a
conscious goal of the performed task), and has been
shown to be easier to combine with tasks requiring
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distributed rather than focused attention (Alvarez &
Oliva, 2009; Chong & Treisman, 2005).

Visual information statistically represented

Summary statistics (also referred to as ensemble
coding or set representations) have been discussed
generally in the context of experiments displaying
simple stimuli as circles (Ariely, 2001; Corbett & Oriet,
2011; see Figure 1A, 1B), Gabor patches (Attarha &
Moore, 2015a) and colored forms (Ward, Bear, &
Scholl, 2016). These tested, correspondingly, coded
information of mean size (Ariely, 2001; Corbett &
Oriet, 2011; Allik, Toom, Raidvee, Averin, & Kreegi-
puu, 2014), orientation (Alvarez & Oliva, 2009), and
hue (Maule & Franklin, 2015; Ward et al., 2016), as
well as brightness (Bauer, 2009), spatial position
(Alvarez & Oliva, 2008), and motion speed and
direction (Sweeny, Haroz, & Whitney, 2013). Most
studies used static arrays (Ariely, 2001; Chong &
Treisman, 2003, 2005), in which set stimuli were
presented simultaneously, testing spatial summation
(Alvarez & Oliva, 2009). Nevertheless, visual input in

real life is dynamic (Hubert-Wallander & Boynton,
2015), and other studies used rapid visual serial
presentation (RSVPs), requiring summarizing over time
(Corbett & Oriet, 2011; Brezis, Bronfman, & Usher,
2015; Hubert-Wallander & Boynton, 2015). With either
presentation mode, results show that observers estimate
mean set properties quite precisely and performance is
speeded with increased number of display items
(Corbett & Oriet, 2011; Robitaille & Harris, 2011). In
contrast, observer ability to identify set member items
was close to chance, indicating that they coded very
little information of individuals but still possessed
information concerning the set as a whole (Ariely,
2001; Corbett & Oriet, 2011; Utochkin, 2015; Ward et
al., 2016).

Extraction of summary statistics is not exclusive for
perception of low-level stimuli. Set mean perception
occurs also for high-level information, such as facial
emotion (Haberman & Whitney, 2007, 2009; Figure
1C; Neumann, Schweinberger, & Burton, 2013), object
lifelikeness (Yamanashi Leib, Kosovicheva, & Whit-
ney, 2016) and biological motion of human crowds
(Sweeny, Haroz, & Whitney, 2013), suggesting that
summary representations are generated in high-level

Figure 1. Testing set summary perception. (A) Two trial intervals, presenting a set of circles followed by a test circle asking if the test

was present or if it equals the set mean (Ariely, 2001). (B) RSVP sequence of 5–11 circles, with a test circle before or after the

sequence (Corbett & Oriet, 2011). (C) Faces (4–16) varying in emotional expression, followed by a test face (Haberman & Whitney,

2009). (D). A set of (4–16) two-digit numbers sequentially presented, asking participants to report set average (Brezis et al., 2015).
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visual areas as well. This ability is also relevant to
auditory stimuli, summarizing pitch or frequency
sequences (Albrecht, Scholl, & Chun, 2012; Piazza,
Sweeny, Wessel, Silver, & Whitney, 2013; McDermott,
Schemitsch, & Simoncelli, 2013), and we are also able
to estimate numerical averages of two-digit numbers
(Brezis et al., 2015; see Figure 1D), using a remarkable
approximate holistic ‘‘intuitive mode.’’ Taken together,
these suggest that averaging might be a general
perceptual ability.

Experimental goals

We first confirm and expand conclusions of the
above studies, testing the impact of mean presence in a
membership task, with two essential innovations: We
test memory with a two-alternative forced choice (2-
AFC) paradigm, allowing a criterion-free result; (every
correct response is both a hit and a correct rejection;
every incorrect response both a miss and a false alarm).
Furthermore, instead of executing both membership
and mean tests, in the current experiment we instructed
participants to perform only membership tests, as if
examining their visual memory, so that perception of
the mean is implicit. On each experimental trial,
participants viewed a centrally-presented RSVP se-
quence of low-level elements with a varying feature.
Then, they were shown two test elements and asked to
select which was a member of the sequence. By placing
the mean set element as one of the test elements
(member or nonmember), we tested how the mean
property (or proximity to the mean) influences the
results. Participants were not informed of the involve-
ment of mean properties and the division to different
trial subtypes. Combining this strategy and short RSVP
exposure times, we limit observer ability of processing
individual elements, leaving only gist perception of the
set. We hypothesize that as the member test element is
closer to the mean set property, performance will
improve, and as the nonmember test element is closer
to the mean, performance will deteriorate. This trend is
termed the ‘‘Mean Effect.’’

The second, less discussed property of summary
statistics is perception of set range or its boundaries. It
has been shown that observers perceive the variance of
stimulus sets (Dakin & Watt, 1997; Morgan, Chubb, &
Solomon, 2008; Solomon, 2010), and there is indirect
evidence concerning observer knowledge of the set
range, itself (Ariely, 2001; Haberman & Whitney,
2010), and its effect on mean judgment (Maule &
Franklin, 2015). Here, we directly test range-perception
effects on membership judgment, termed the ‘‘Range
Effect.’’ To observe this effect, the nonmember test
element was occasionally an element that is outside of
the set range. For example, in circle size trials, the

nonmember element could be either larger than the
largest set circle or smaller than the smallest one.

We performed three psychophysical experiments,
varying size, orientation, or brightness, asking the
following questions: What set characteristics are
perceived? Mean, plus variance, or range? Are these
perceived automatically, when they are not part of the
performed task? How precise are mean and range
perception? How far from the mean need an object be
to be considered not the mean? How far from the edge
of the range need an object be to be considered out-of-
the-range? Finally, we ask if these characteristics are
similar for the different tested features.

Methods

Participants

Thirty-nine participants were tested; all reported
normal or corrected-to-normal vision. Fifteen partici-
pants, students at the Hebrew University of Jerusalem
(students), were tested in our laboratory (age range ¼
20–27 years, mean¼ 23.7 years; nine men, six women).
In addition, we tested 24 participants from Amazon
Mechanical Turk (MTurk), a crowdsourcing platform
enabling coordination of online participants of up-
loaded human information tasks, using Adobe Flash.
There was no significant difference between the results
of the two groups. All participants provided informed
consent and were compensated for participation. All
participants were naı̈ve as to the purpose of the
experiment.

Apparatus

The laboratory procedure took place in a dimly lit
room, with participants seated 50 cm from a 24-in. Dell
LCD monitor (Dell, Xiamen, China). All stimuli were
shown against a gray background (RGB 0.5, 0.5, 0.5).
Stimuli were generated using Psychtoolbox version 3
for MATLAB 2015a (MathWorks, Natick, MA). It is
more difficult to know exact physical conditions for
MTurk participants.

Stimuli and procedure

We used a RSVP method to present low-level feature
stimuli in the center of the display. The in-house
student experiment was separated into three sessions
with a short break between them, and each session
consisted of three blocks for the different low-level
feature stimulus types, as shown in Figure 2:
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1. Size: 12 black (RGB 0, 0, 0) hollow circles (rings
of 0.135 cm width) of six different sizes (two
circles for each size) were randomly picked for
each RSVP trial, presented in random order,
followed by a masking stimulus. The only
difference between circles was their varying
diameter. The circles database contained 30
different size circles, equally spaced from 0.324 cm
minimum to 9.72 cm maximum diameter. Each
increment in size (0.335 cm) is termed a ‘‘unit.’’
The range of each trial set was restricted to a
maximum of 15 units (4.86 cm), leaving margins
of another fifteen sizes out of the range. On each
RSVP trial, the range was randomly determined,
giving different ranges from trial to trial, between
eight and 15 units.

2. Orientation: 12 light gray lines (RGB 0.7, 0.7, 0.7;
8.64 cm 3 0.135 cm) of six different orientations
(two lines for each orientation in each 12-element

sequence) were randomly chosen for each RSVP
trial, presented in random order. The line
database contained 30 differently oriented lines,
between 08 and 1748 with increments of 68, termed
a ‘‘unit.’’ The maximum range of the set was 15
units (848), leaving margins of another 15 orien-
tations out of the range. On each RSVP trial, the
range was randomly determined between 8 and 15
units.

3. Brightness: Twelve 13.5 cm diameter disks with
black rings (RGB 0, 0, 0) of 0.054 cm width and
filled with six brightness levels (two disks for each
gray level in each 12-element sequence) were
randomly chosen for each RSVP trial, presented
in random order. Disks differed only in brightness
and the consequent contrast made with the
background and surrounding ring. The brightness
database contained 30 different levels of bright-
ness from light gray (RGB 0.79, 0.79, 0.79) to
dark gray (RGB 0.21, 0.21, 0.21) with increments

Figure 2. Experimental paradigm. An RSVP sequence of stimuli was presented followed by two test stimuli. Participants chose which

test stimulus was a member of the set. (A) Circle size (B) Line orientation (C) Circle brightness. Test element subtypes are detailed in

Table 1.
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of 0.02. Thus, the brightness level inside the disk
was either darker or brighter than the background
and appeared as such despite the black ring. Each
increment in brightness is termed a ‘‘unit.’’ The
maximal set range was 15 units, from darkest to
brightest, leaving another 15 brightness levels out
of the range. On each RSVP trial, the range was
randomly chosen, between eight and 15 units.

Each session consisted of 60 trials, 20 of each
stimulus block, four of each of the five subtypes (see
below). Trials were preceded by a fixation cross in the
middle of the screen for 2 s, and then 12 elements were
displayed sequentially 5/s, i.e., with 200 ms stimulus
onset asynchrony (SOAs) consisting of 100 ms stimulus
and 100 ms interstimulus interval (ISI). After the RSVP
sequence, a 2-AFC membership test was performed
with two test elements presented on either side of the
screen—one, a member of the trial set and the other a
nonmember. Participants were instructed to press the
right/left arrow button on the keyboard corresponding
to the position of the member element. Each of the
three blocks was repeated three times, giving 180 trials
total per participant. Participants began with a training
session containing 15 trials, five for each stimulus type.

All trial stimulus and exposure time parameters were
the same for the MTurk experiment. However, each
session (total 3) tested a single stimulus feature, size,
orientation, or brightness. Each session had 40 trials,
eight for each subtype, making 120 trials total per
participant.

Since participants are better at perceiving and
memorizing early and late elements, (primacy and
recency effects; Hubert-Wallander & Boynton, 2015),
the choice of test member elements excluded the first
and last two elements of the RSVP sequence.
Background color and stimulus position were constant
so that only one feature changed during the trial
(Figure 2).

Trial subtypes

The experiment was designed with five different trial
subtypes (Table 1), pseudorandomly mixed in each

session. The difference between subtypes is only in the
membership test stimuli. Each test element could be
one of the following options: A—an element in the
range of that trial’s RSVP set; Amean— an element
equal to that trial’s set mean (size, orientation, or
contrast); B— an element out of the set range
(necessarily a nonmember test element). There were five
trial subtypes in total, numbered as presented in Table
1, without participants being aware of this division.

Statistical tests and data analysis

To verify that performance accuracy and reaction
times (RT) depend on test stimulus subtype, we
conducted repeated measure two-way analyses of
variance (ANOVA) with within-subject factors of mean
and range. Additionally, a one-way repeated-measure
ANOVA tested differences between subtypes 1, 2, and
3, testing the mean effect isolated from ‘‘outside range’’
subtypes 4 and 5. To investigate significant mean and
range effects for specific subtypes, we performed one-
tailed t tests. We use one-tailed t tests because in each
case we test significance of a specific direction of
influence, where the opposite direction is counterintu-
itive. Nevertheless, all effects found to be significant,
would be significant also under two-tailed t tests, as
well. To test effects at higher resolution, we plot
accuracy and response time (RT) results as a function
of distance from set mean (or edge).

Results

We evaluated participant performance by measuring
accuracy rates (choosing the element that was a
member of the set) and RT for each trial subtype
separately. The first step in the analysis was averaging
the results across participants to yield a group mean
result for each subtype. Figure 3 depicts percentage of
correct responses for Students (Figure 3A), MTurk
participants (Figure 3B), and all participants combined
(Figure 3C), for each of the five trial subtypes. Results
for each of the three low-level stimulus blocks, testing
size, orientation, and brightness are also shown
separately (Figure 3D). The proportion of correct
responses for each subtype was relatively close for the
three stimulus blocks.

Entering the accuracy rates (of all 39 participants)
into a 2 (member element: mean vs. non-mean) 3 2
(nonmember element: in range vs. outside range)
repeated measure ANOVA revealed significant main
effects of mean, F(1, 38)¼ 11.65, p , 0.01, and range,
F(1, 38)¼ 345.33, p , 0.001, and an interaction effect,
F(1, 38) ¼ 14.56, p , 0.001, as well. The interaction is

Subtype

number

Member

test element

(correct)

Nonmember

test element

(incorrect)

1 Amean A

2 A A

3 A Amean

4 A B

5 Amean B

Table 1. Trial subtypes.
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due to the mean effect being present only when the non-
member test element was in the set range, as shown by
post-hoc t tests (see the following materials, following
section). We suggest that the absence of a mean effect
in ‘‘out of range’’ subtypes was due to its being much
smaller than the range effect and a ceiling effect for out-
of-range nonmembers. We conclude that variance in
accuracy results was due to different subtype difficul-
ties, rather than participants’ arbitrary performance.

Mean effect

The hypothesis behind searching for the mean effect
in this membership test is that in the absence of
individual element representations, participants would
tend to perceive the mean element as a set member.
Without being able to remember and recognize member
elements, participants may choose the test element
closer to the mean, irrespective of whether it was a
member of this trial’s set. Indeed, a significant
difference was found (p , 0.001, for all participants)
between trial subtypes with mean feature as the correct

test element with respect to subtypes with ‘‘non-mean’’
feature as the correct test element, as shown in Figure 4
for the student (Figure 4A), MTurk (Figure 4B) and
combined results (Figure 4C). This was found for each
stimulus block and tested varying dimension, size,
orientation, and brightness (Figure 4D).

To zoom into the mean effect, we tested only
subtypes presenting two test elements within the set
range (subtypes 1, 2, and 3), excluding trial subtypes
containing irrelevant (out-of-range) factors and leaving
mean element position (member, nonmember or none)
as the only variable. We hypothesize that results will
reveal a decrease in performance for subtype 3 (A-
Amean) due to the nonmember being the mean, and an
increase in performance for subtype 1 (Amean-A) due
to the member being the mean, compared to subtype 2
(A-A) which lacks the mean at all. Thus, subtype 2
serves as control for this analysis. Indeed, a one-way
repeated measure ANOVA (for all 39 participants) on
accuracy rates between these subtypes revealed a
significant effect of mean presence, F(1, 38)¼ 18.93, p
, 0.001. Results showed better performance for
subtype 1 (Am-A) versus subtypes 2 or 3 (A-A or A-

Figure 3. Accuracy by trial subtype. (A–C) Accuracy averaged over stimulus block vs. trial subtype (subtype 1:Am-A; 2:A-A; 3:A-Am;

4:A-B; 5:Am-B; Am¼ Amean, Mem¼member, nMem¼ nonmember). (A) Students. (B) MTurk. (C) All participants. (D) Accuracy for

each stimulus block, (tested dimension), separately (all participants). Error bars, here and in subsequent figures, represent standard

errors across subjects for each trial subtype.
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Am) in each stimulus block (t test: p , 0.002) except
brightness (Figure 3C). While subtypes 2 and 3 were
surprisingly quite similar for the student group (3A and
6A), for MTurk participants (3B and 6B) the effect was
significant between each of these subtypes (t test: p ,

0.005), as predicted.
For a more specific analysis regarding the influence

of proximity to the mean, we calculated accuracy as a
function of the test element (member/nonmember)
relative distance from the mean of the RSVP set (and
not merely whether they are exactly the mean feature).
Figure 5 illustrates this effect as analyzed by the data of
subtype 2 (A-A), showing that accuracy decreases as
the member test element is farther from the mean
feature (Figure 5A), and accuracy increases as the non-
member test element is more distant from the mean
(Figure 5B). Gray circles in Figures 5A and 5B are
taken from subtypes 3 (A-Amean) and 1 (Amean-A),

respectively, in which one of the test elements is exactly
the mean feature. A gradual trend in accuracy is seen
within subtype 2 (A-A), with the most accurate trials
being those with the member closest to the mean and
the non-member the most distant, as demonstrated by
the three-dimensional plot of Figure 5C.

We measured the isolated mean effect (subtypes 1, 2,
3, disregarding subtypes 4 and 5 with out-of-range
nonmember) as a function of the difference between the
distances of the test elements from the mean. To what
extent do participants choose the element that is closer
to the mean? Figure 6A and 6B illustrates participant
accuracy performance for each participant group.
Results show a mild decrease in performance if the non-
member is the set mean (subtype 3, A-Amean
compared to subtype 2, A-A; Students: n.s.; MTurk: p
, 0.01); a significant increase if the member is the set
mean (subtype 1, Amean-A, compared to subtype 2, A-

Figure 4. Accuracy results showing mean effect. Accuracy rates for subtypes with member test element equal to the set mean (1, 5)

and for subtypes with member test element not the mean (2, 3, 4) combining stimulus blocks. (A) Students. (B) MTurk. (C) All

participants. (D) Accuracy rates for each stimulus block separately (all participants). * p , 0.05, *** p , 0.001.
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A; Students: p , 0.05; MTurk: p , 0.01); and a highly
significant effect comparing presence of the set mean as
the member or the non-member (subtype 3, A-Amen,
compared to subtype 1, Amean-A; both groups: p ,
0.001). Note that performance for the control subtype 2
(A-A), where neither test element is the set mean, is
near chance level (0.50 6 0.03 and 0.53 6 0.01 for
Students and MTurk, respectively). Performance is
significantly beyond chance when the member is the
mean (0.60 6 0.04 and 0.63 6 0.02) and below chance
when the nonmember test element is the mean (0.48 6
0.03 and 0.44 6 0.02). This suggests that the dominant
effect for response is not element memory but rather
perception and memory of the set mean. This is
especially striking since set mean is determined on the
fly for each trial separately.

In Figure 6C and 6D we plot performance as a
function of the difference between the distances of the
test elements from the mean, when the member was
closer to the mean (right side of the graphs) or further
from it (left side). This is plotted for each subtype
separately (blue, red, and gray curves for subtypes 1, 2,
and 3, respectively) and averaged together (green), for
Students (Figure 6C) and MTurk participants (Figure
6D). The black dashed line is the linear regression of

the averaged three subtypes, showing improved per-
formance as the member test element is closer to the
mean, and poorer performance as the non-member
element is closer to the mean. These results suggest that
observers tend to respond relying not only on their
perception of the set mean, but also on the proximity of
the test elements to it.

(C-D) Accuracy as function of difference between
test elements’ distances from the mean for Students (C)
and MTurk (D). On the left, the nonmember test
element is closer to the mean; on the right, the member
test element is closer to the mean. Green line is average
performance of all three subtypes; dashed line is its
trendline.

Range effect

We also investigated perception of the second set
characteristic—representation of its boundaries, termed
the ‘‘Range Effect.’’ Improvement in performance on
the membership test when the nonmember deviates
from the RSVP set boundaries would lead to the
conclusion that not only the set mean but also the set
range is represented. This is demonstrated first in
Figure 3, and in more detail in Figures 7 and Figure 8.
As long as both test elements were in the set range
(subtypes 1, 2, and 3), average performance was poor
(0.52 6 0.01 proportion correct). In contrast, subtypes
(4 and 5) with out-of-range nonmember elements
showed highly significant superior performance (0.83 6
0.01 correct; p , 0.001; Figures 7A and 7B).

We divided the accuracy results for out-of-range
subtypes (4 and 5) into trials where the nonmember
element was higher versus lower than the set range, to
test if the range effect is present for both sides. In both
cases, performance was high (0.85 6 0.01 and 0.82 6
0.01 correct for nonmember below the minimum and
above the maximum, respectively). Comparing these
results to the in-range trial subtypes (1, 2, and 3), we
found a significant performance improvement for each
side (p , 0.001), as seen in Figure 7B. Response time
measurements also revealed a significant difference (p
, 0.001) between the in-range and out-of-range
subtypes (1.20 6 0.02 s nonmember test element in-
range; 1.06 6 0.02 s out-of-range), suggesting that
out-of-range judgments are made more rapidly (Fig-
ure 7C). Taken together, these results suggest that
observers’ representation of the range of a set included
the boundaries on both sides of a set’s variable
feature.

In Figure 8 we plot results for the nonmember out-
of-range subtypes (4 and 5) as a function of the distance
of the non-member element from the set range closer
edge (Figure 8A: Students; 8B: MTurk). There is a
strong upward slope reflecting a gradual increase in

Figure 5. Graded mean effect with distance from mean (all

participants). Subtype 2 (A-A) accuracy as function of member

test element distance from set mean (A) and as function of

nonmember test element distance from set mean (B). Gray

circles represent accuracy for (A) subtype 1 (Am-A) or (B)

subtype 3 (A-Am). (C) Performance accuracy for subtype 2 (A-A)

as a function of distance of both test elements from the mean.
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performance as the nonmember test element is more
distant from the set range, indicating a gradual range
effect (Students slope ¼ 0.023, R2¼ 0.893; MTurk:
slope¼ 0.019, R2 ¼ 0.75).

Combining data from the two participant groups
and comparing subtypes 2 (A-A) and 4 (A-B), we plot
in Figure 9A a continuous presentation of the range
effect, as a function of nonmember test element
distance from the mean, whether in- or out-of-range.
This analysis reveals a jump in performance when
crossing out of the range, as indicated by the arrow in
Figure 9. Accuracy improves as the distance from the
mean increases, with a jump between regression lines of
in- (gray dots) and out- (blue dots) of-range. An
ANOVA with main factor non-member in or out of
range (A-A vs. A-B) for nonmember distance from
mean 5–8, revealed that this jump is significant, F(1, 6)
¼ 21.325, p , 0.01, and similarly when the member

equals the mean (Amean-A vs. Amean-B; p , 0.05).
This jump can only be due to a perceptual represen-
tation of the range of the set, not only of its mean, and
not even of mean plus variance. Taken together, these
results lead to the conclusion that observers had a
sharp representation of the range of a set, which
included the boundaries on both sides of the set’s
variable feature.

The range effect can also be seen independent of
the mean effect, as demonstrated in Figure 9B. Here,
we plot performance accuracy for subtypes A-A and
A-B, that is comparing performance when the
nonmember element was within or outside the
sequence range, as in Figure 9A. However, here we
plot performance for each stimulus value, indepen-
dent of the position of the range and of the mean
value. There is a striking difference between the two

Figure 6. Membership test performance as function of mean presence or distance from test elements on in-range subtypes (1, 2, and

3). (A-B) Accuracy rates for each subtype and t tests between them for students (A: excluding trials with ,4 units distance) and MTurk

(B). * p , 0.05, ** p , 0.01, *** p , 0.001.
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curves, indicating that observers were well aware of
the sequence range.

Following the experimental session, we queried
student observers as to their strategy in performing the
task. All responded that they tried as hard as possible
to recall the absolute stimulus values in the sequence, to
determine which test item was a member of the set. The
only exception was that some indicated that for
extreme sets, (e.g., all items very large or very small),
they were able to choose as a member the test item that
matched the set.

Summary and discussion

In summary, regarding basic features of size,
orientation, and brightness, two main phenomena were
found by a 2-AFC experiment testing memory of an
element out of a sequence of 12: (1) Mean effect—the
mean representation-biased participant decision to-
ward choosing the element closer to the mean as the
member of the RSVP sequence, whether it was or was
not actually the member. (2) Range effect—the range
representation assisted participants in rejecting ele-
ments outside the RSVP sequence range, therefore
correctly choosing the member element quite easily and
achieving high performance with these trials. Impor-
tantly, participants were never informed about the

involvement of mean, range, or any other statistical
properties, and they only followed the instructions of a
simple visual memory task. Thus, any use of informa-
tion as to the mean and range of the set must come
from automatic, implicit perception of these statistical
properties.

We confirmed the mean effect for three perceptual
features, size, orientation, and brightness and found
that participants perceive the mean online, i.e., for
each trial’s set of stimuli independently, and implicitly,
and without set mean information being relevant to
the performed task. Presence of the RSVP set mean as
member or nonmember in the 2-AFC test, impacted
strongly on membership judgments (Figures 3, 4), and
proximity to the mean was effective gradually (Figures
5, 6). Experimental conditions were intentionally
designed, with multiple stimuli presented with short
SOAs, to make it difficult for participants to memorize
all the elements, leading to their relying on their mean
representation. Participants depended only on implicit
perception of the mean (and range) and chose the test
element closer to the mean, to the extent that
performance is below chance level when the non-
member is closer to the mean. Previous results on
ensemble processing found that observers can process
up to four items every 210 ms (Gorea, Belkoura, &
Solomon, 2014), suggesting that in our study observ-
ers had sufficient time to process individual elements.
Nevertheless, performance is quite close to chance

Figure 7. Range effect: accuracy and response time (all participants). (A) Accuracy for averaged subtypes from both nonmember test

element forms. (B) Accuracy rates for trials where the nonmember element is either lower, higher, or in the range of the set. Results

from subtypes 4 and 5 for ‘‘.max’’ and ‘‘,min’’ trials, and subtypes 1, 2, and 3 for ‘‘in range’’ trials. t tests showed highly significant

differences for each side of the range. (C) Response time for in- and out-of-range subtypes. *** p , 0.001.
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level when both test elements are within the set range.
This indicates that even when observers had time to
process individual elements, the surprising result is
that, nevertheless, they do not succeed to remember all
presented elements, but rather depend on their implicit
perception of the sequence mean. We do not know
what would have been the outcome had the partici-
pants been able to view each stimulus at leisure
(Standing, 1973). Comparing results as a function of
test element distance from the mean, we found a
gradual shift in accuracy with respect to the member
or nonmember element distance from the mean
(Figures 5, 6, 9). Thus, the ensemble mean is
perceived, though approximately. This characteriza-
tion correlates with previous results of visual summary
statistics (Haberman & Whitney, 2009) and the
intuitive system of numerical averaging, as well (Brezis
et al., 2015).

The second, less discussed, characteristic perceived
is the set range—a sequence with a variable feature
from one boundary to another. Results of Ariely
(2001) already suggest that observers exhibit some
knowledge of the range of sets, excluding from their
membership judgments test elements beyond the set’s

edges. As shown in Figures 7–9, observers succeeded
in telling if one of the test elements was out of the size,
orientation, or brightness range, therefore choosing
the other element as a member. In these cases, where
one test element is outside the set range, performance
jumps from close to chance to ;80% correct. There is
a well-known perceptual phenomenon called ‘‘the
central tendency of judgment’’, where observers tend
to judge elements as closer to the mean than they
really are, in a range-dependent manner (Holling-
worth, 1910). Although this may be an independent
phenomenon, it, too, shows that observers have an
implicit knowledge of the mean and range of
sequences of stimuli.

These capabilities of our perceptual systems are
widely used in our daily encounters with objects,
without awareness of the mechanisms nor of their effect
on behavior. We see a tree full of leaves and roughly
perceive average and range of their size, color, density,
etc. We represent highways by summaries of overall
speed and direction of motion, only secondarily by
properties of each vehicle. The ability to include
summarized properties from multiple items serves
perception efficiency, saving time and energy required

Figure 8. Range effect: increased accuracy as the non-member element more distant from set’s edge in (A) Students. (B) MTurk. The

red dots represent trial subtype 4 and the blue dots represent trial subtype 5. The gray dots connected by the black line represent the

average of both subtypes. Dashed-line represents the trendline of the average of both subtypes.
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to encode information of small elements, separately.
Range representation, too, serves daily perception and
behavior by isolating elements whose features deviate
from the range of sets of scene elements, so that they
pop out in an automatic detection process (Rosenholtz,
1999; Treisman & Gelade, 1980).

We leave to future research discovery of the cerebral
sites and cortical mechanisms underlying set summary
statistic perception, including mean and range percep-
tion.

Keywords: summary statistics, mean, range, visual
dimensions
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