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Photovoltaic subretinal prosthesis is designed for
restoration of central vision in patients with age-related
macular degeneration (AMD). We investigated the utility
of prosthetic central vision for complex visual tasks using
augmented-reality (AR) glasses simulating reduced
acuity, contrast, and visual field. AR glasses with blocked
central 208 of visual field included an integrated video
camera and software which adjusts the image quality
according to three user-defined parameters: resolution,
corresponding to the equivalent pixel size of an implant;
field of view, corresponding to the implant size; and
number of grayscale levels. The real-time processed
video was streamed on a screen in front of the right eye.
Nineteen healthy participants were recruited to
complete visual tasks including vision charts, sentence
reading, and face recognition. With vision charts, letter
acuity exceeded the pixel-sampling limit by 0.2 logMAR.
Reading speed decreased with increasing pixel size and
with reduced field of view (78–128). In the face
recognition task (four-way forced choice, 58 angular size)
participants identified faces at .75% accuracy, even
with 100 lm pixels and only two grayscale levels. With
60 lm pixels and eight grayscale levels, the accuracy
exceeded 97%. Subjects with simulated prosthetic vision
performed slightly better than the sampling limit on the
letter acuity tasks, and were highly accurate at
recognizing faces, even with 100 lm/pixel resolution.
These results indicate feasibility of reading and face
recognition using prosthetic central vision even with 100
lm pixels, and performance improves further with
smaller pixels.

Introduction

Age-related macular degeneration (AMD) is a
leading cause of untreatable visual impairment. With
the current prevalence of 8.7% worldwide, AMD is
projected to affect almost 200 million people in 2020,
and its prevalence is growing with the population aging
(Friedman, Tomany, McCarty, & De Jong, 2004;
Wong et al., 2014). Patients with advanced atrophic
AMD (currently about 1% prevalence in Western
countries (Friedman et al., 2004; Wong et al., 2014) )
suffer from the loss of photoreceptors in the macula,
leading to compromised central vision. Although high-
resolution vision is lost, patients still can use their
preserved peripheral vision and typically retain acuity
no worse than 20/400. Therefore, restoration of central
vision may be worthwhile only if the restored visual
acuity exceeds the residual natural level.

In the healthy eye, photoreceptors convert incident
light into electrical and chemical signals. The resultant
neural signals are processed by the bipolar cells and
other nonspiking neurons in the inner nuclear layer
(INL) and advance to the retinal ganglion cells (RGC),
which generate action potentials that propagate via
optic nerve to the brain. Loss of photoreceptors in
retinal degenerative diseases impairs the initial photo-
transduction process, while the remaining retinal
network remains intact, albeit with some rewiring
(Humayun et al., 1999; Kim et al., 2002; Mazzoni,
Novelli, & Strettoi, 2008).
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Multiple approaches are being developed to address
the loss of sight in retinal degeneration (Scholl et al.,
2016), including gene therapy (Sengillo, Justus, Tsai,
Cabral, & Tsang, 2016), cell transplantation (Lorach et
al., 2019; Seiler et al., 2008), optogenetics (Barrett,
Berlinguer-Palmini, & Degenaar, 2014), and electronic
implants. In the latter case, an array of electrodes is
placed at the stimulation site, such as the retina (D.
Palanker & Goetz, 2018), optic nerve (Veraart, Wanet-
Defalque, Gérard, Vanlierde, & Delbeke, 2003), lateral
geniculate nucleus (LGN; Nguyen et al., 2016), or
primary visual cortex (Lewis, Ackland, Lowery, &
Rosenfeld, 2015). Electric current is injected into tissue
to stimulate cells and thereby elicit visual perception.
Upon electrode activation, patients report perceiving
‘‘bright spots,’’ termed phosphenes (Humayun et al.,
2012; Stingl et al., 2015). The number of electrodes
limits the amount of information deliverable, and
electrode density restricts the highest possible resolu-
tion. In animal studies with photovoltaic retinal
prosthesis, we demonstrated that grating acuity
matches the pixel pitch with 55 (Ho, Lorach, Huang, et
al., 2018) and 75 lm pixels (Lorach, Goetz, Smith, et
al., 2015). Recent clinical trial of such implants
(PRIMA, by Pixium Vision) having 100lm pixels also
demonstrated that prosthetic visual acuity in AMD
patients is only 10%–30% below the sampling limit of
20/420 for the current pixel size (D. V. Palanker et al.,
2019).

The PRIMA implant stimulates the first layer of
neurons after photoreceptors (INL), and therefore
elicited network-mediated retinal responses retain
many features of the natural signal processing,
including flicker fusion at high frequencies (.20 Hz;
Lorach, Goetz, Mandel, et al., 2015; Lorach, Goetz,
Smith, et al., 2015), adaptation to static images (Stingl
et al., 2013), antagonistic center-surround organization
of receptive fields with linear and nonlinear summation
of its subunits (Ho et al., 2017). Patients with the
implant can perceive lines as thin as the pixel pitch on
the retina (i.e., single pixel in width) and identify letters
with the minimum gap in the letter C of 1.1–1.3 pixels
(D. V. Palanker et al., 2019).

Since AMD patients retain peripheral vision, they
have little problem with ambulation. However, im-
paired reading and face recognition pose significant
challenges in daily living (Mitchell & Bradley, 2006). To
assess the spatial resolution, number of grayscale levels
and the size of the implant required for these visual
tasks, we simulated prosthetic central vision using
augmented-reality glasses with a camera. Prosthetic
vision was mimicked by controlled reduction in spatial
resolution, contrast and visual field of the images
projected on the built-in display. Here, we investigate
how well healthy subjects can accomplish complex
visual tasks, including reading and face recognition,

under various levels of image degradation. The results
of this study predict the best possible clinical outcomes,
as prosthetic vision in patients with retinal degenera-
tion is likely worse than just pixelized natural vision at
reduced contrast.

Psychophysics studies of simulated prosthetic vision
were conducted in the past, but we find those results
insufficient for predicting the outcomes with our
current implant. With photovoltaic subretinal implant
for restoration of central vision in AMD patients,
simulation requires the following specifications: (a)
pixel density .100 pixels/mm2, (b) no gaps between
phosphenes, (c) visual field in the range of 78–108, and
(d) eye scanning is allowed. Since previous studies did
not address these specifications, we conducted a
psychophysics study to assess the limits of visual
performance of the PRIMA system and set the
expectations for the upcoming clinical trials.

Methods

Subjects

Nineteen subjects (ages 18–74), all recruited from
personnel at Stanford University, signed informed
consent and participated in the current study. All
subjects had self-reported normal vision, and their
visual acuity was verified with both a Landolt C test
and ETDRS chart prior to the experiments. For
complex reading tasks, subjects were required to have
native or near-native English proficiency. All subjects
had limited or no prior experience with virtual or
augmented-reality (AR) glasses. The study was ap-
proved by the Stanford IRB panel on human subject
research and conducted according to the institutional
guidelines, following the tenets of the Declaration of
Helsinki.

Experimental setup

The experimental apparatus included two parts: a
stimulus presentation system and AR glasses with the
head-on display and an image processing unit (Figure
1).

The stimulus presentation system involved a 24 00

monitor (ASUS VS248H-P) controlled by a laptop
computer (Thinkpad 25, Lenovo) using a PsychTool-
box-based (Brainard & Vision, 1997; Kleiner et al.,
2007; Pelli & Vision, 1997) custom software in Matlab.
This system was used to display stimulus and record
subjects’ responses (such as accuracy and time taken)
via experimenter input. The monitor was placed 30 00

away from a chinrest, where the subjects would place
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their head during an experiment. The monitor had
resolution of 24003 1350 pixels, corresponding to 90.4
pixels per degree (ppd) of visual angle.

Camera (4 MP) mounted on the front of the AR
glasses (ODG R-7, Osterhout Design Group, San
Francisco, CA) captures a live video stream. Camera
magnification was set to match the angular size of the
natural vision. The data is then processed with an
Android-based custom app in real time according to
three user-defined parameters: pixilation (equivalent to
30–100 lm pixel size on the retina), number of
grayscale levels (2–256), and field of view (FOV; 78–
128). The resultant video was presented on the display
in the glasses (specs: 308 FOV, 720 p, 80 fps). The
latency between the camera and the display was
minimal due to fast video processing. In a typical AR
display system, the integrated display is transparent, so
that presented visual information can fuse with the
passthrough background (hence, ‘‘augmented’’ reality).

To mimic vision loss in AMD patients, an area on
the glasses corresponding 208 of central vision, was
blocked with black opaque tape for both eyes. In this
region, only the integrated display was visible, while
outside that region, only natural peripheral vision was
present (Figure 1c). Here we only assess monocular
prosthetic vision, so the display was only switched on
for the right eye, which incidentally corresponded to
the dominant eye of all subjects. Visual information for
small targets (Landolt C, letter identification, and face
recognition) spanned a maximum 58, so subjects used

electronic display exclusively, and could not benefit
from moving their eyes outside the obscured area.
Similarly, in the sentence reading tests with fonts of 18
or below, all the text was displayed behind the mask.
As for sentences with larger font sizes, even though
subjects could in theory have peeked outside, most of
the sentence was still obscured. Subjects were instructed
to vocalize the sentences sequentially, so looking at the
few letters at the end of the sentence would not help
with the task. Therefore, participants practically only
read via the electronic display, which was confirmed
through postinterviews.

The video processing was done with the OpenCV
library, and the workflow was as following: A video
frame was cropped to match the desired FOV. The
frame was then converted to grayscale, downsized, and
reupsized back to the original image size, resulting in a
tightly packed pixilated, grayscale image. We used the
default nearest-neighbor interpolation for image
transformation in Android. The pixilation here
matched the desired pixel size on the retina, e.g., 100
lm pixels subtend 0.358 on the human retina. The gray
color value for each pixel was then rounded to the
nearest 255/(n – 1), where n is the number of grayscale
levels.

Subjects were instructed to wear the AR glasses and
learned to adjust pixel size, grayscale levels, and FOV
using in-app controls. To familiarize our subjects with
simulated prosthetic vision, they were instructed to
look around the laboratory freely for a few minutes,

Figure 1. Experimental setup. (a) Schematic of the experimental setup. High resolution images are presented on a monitor. The front

camera of the augmented-reality (AR) glasses captures the video stream. Custom software preloaded on the AR glasses adjusts the

video quality to mimic prosthetic vision and displays it in the AR glasses. (b) A subject in front of the apparatus. (c) Illustration of

vision through the AR glasses.
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and were also presented pictures of common animals,
plants, and foodstuffs.

Procedures

We conducted three different experiments: (a) letter
visual acuity, (b) sentence reading, and (c) face
recognition. Parameters for simulated prosthetic vision
are summarized in Table 1. Subjects were instructed to
fixate their central vision to the center of the AR screen
but were allowed to move their eyes and head, if
desired. In all experiments, subjects vocalized their
responses, which were recorded and timed by the
experimenter. Typically, a full set of experiments could
last up to 90 minutes. If a subject got tired, a new
session for remaining tasks was scheduled.

Letter acuity

Subjects (n ¼ 13 for 30 and 60 lm pixels; n ¼19 for
natural vision and 100 lm pixels) were asked to identify
the orientation of the Landolt C, presented one at a
time. If the subject could identify at least four out of
five orientations of the same size, we reduced the letter
size by 0.1 LogMAR units and repeated. The same
experiment was conducted also with ETDRS letters in
Sloan font. The smallest feature of these characters was
one fifth of the letter size. Subjects were first tested for
their visual acuity with normal or corrected-to-normal
vision without AR glasses, and then with simulated
prosthetic vision. As a point for comparison, we also
computed the sampling limit for each prosthetic pixel
size by calculating its geometric-equivalent visual
acuity.

Sentence reading

Subjects (n ¼ 9 for simple sentences; n¼ 10 for
complex sentences) were asked to read aloud displayed
sentences as fast as possible, following standard
MNREAD protocol (http://legge.psych.umn.edu/
mnread-set). Text in Arial font was presented in three
lines, with approximately 20 characters per line. A new

sentence with reduced font size (�0.1 LogMAR) was
displayed upon successful utterance (�2 mistaken
words per sentence). The font size was measured as the
visual angle between the top of the letter ‘‘k’’ and the
bottom of the letter ‘‘p.’’ In between the sentences, a
fixation cross was shown in the center of the screen for
2 s to recenter the subjects’ vision. Subjects were first
tested with their normal/corrected binocular vision,
and then with simulated prosthetic vision with varying
pixel size and FOV. Eight grayscale levels were used to
match the maximum expectations from the previously
reported rodent studies (Ho, Lorach, Goetz, et al.,
2018) and results with Alpha IMS implant (Stingl et al.,
2015). The reading speed (in words per minute, or
WPM) for each sentence was recorded in software. We
evaluated reading performance on three key metrics:
reading acuity (RA, smallest resolvable sentence),
maximum reading speed (MRS), and critical print size
(CPS, smallest font size at which 90% MRS is reached).

The texts used can be classified into simple and
complex sentences. Simple sentences were either
composed in-house according to the MNREAD
protocol, or taken from the MNREAD iPad App
�2017 (https://itunes.apple.com/us/app/mnread/
id1196638274?ls¼1&mt¼8). Complex sentences were
selected from the Manually Annotated Sub-Corpus
(MASC) from the Open American national Corpus
(OANC) (http://www.anc.org/) with three criteria:
number of characters between 55 and 70, average
word length between 5.5 and 6.5, and sentence capable
of being segmented into three lines of similar length.
Generally, simple MNREAD sentences have stand-
alone context and involve vocabulary at elementary
school level in the US (e.g., ‘‘He looked up at his
mother and told her he was really happy.’’), while
complex sentences may incur more context with
advanced vocabulary (e.g. ‘‘Good housekeeping con-
tributes to safety and reliable results.’’). Only subjects
with native or near-native English level were selected
for the complex reading task. Results for simple and
complex sentences were cross-compared using a two-
sample t test.

Face recognition

Subjects (n¼ 19 for 100 lm; n¼ 17 for 60 lm) were
shown a reference adult face and required to select one
out of four other faces that matched the identity of the
reference as fast as possible (Figure 2a). The correct-
ness and time taken for each selection were recorded. A
set of 10 trials were performed for each parameter
combination, which were presented in a pseudorandom
order to minimize learning effects.

Images of nonoccluded adult heads were randomly
selected from the Face Place database (http://www.

Task

Equivalent pixel

size on

retina (lm)

Number of

grayscale levels

FOV

(8)

Letter acuity 30, 60, 100 2, 8 7

Sentence reading 30, 60, 100 8 7, 12

Face recognition 60, 100 2, 4 ,8 7

Table 1. Parameters of the image processing used for each
experiment.

Journal of Vision (2019) 19(13):22, 1–10 Ho, Boffa, & Palanker 4

Downloaded from jov.arvojournals.org on 04/24/2024

http://legge.psych.umn.edu/mnread-set
http://legge.psych.umn.edu/mnread-set
https://itunes.apple.com/us/app/mnread/id1196638274?ls=1&mt=8
https://itunes.apple.com/us/app/mnread/id1196638274?ls=1&mt=8
https://itunes.apple.com/us/app/mnread/id1196638274?ls=1&mt=8
https://itunes.apple.com/us/app/mnread/id1196638274?ls=1&mt=8
http://www.anc.org/
http://www.tarrlab.org/


tarrlab.org/). The database is licensed under a CC BY-
NC-SA 3.0 Unported License. For the same identity, a
set of images included different viewing angles and
facial expressions, with the background cropped out.
Generally, the most prominent features above the neck
were visible, including hair style, skin tone, and both
eyes. Images were resized and cropped to 58 3 58. Five
images were tiled as shown in Figure 2a, occupying a
visual field of 168 3168. The reference image was placed
at the center.

Results

Letter acuity

With both ETDRS letters and Landolt C, VA
improved with reduced pixel size, as shown in Figure 3.
The leftmost red data point indicates the subjects’
normal or corrected visual acuity, whichever was
better. VA measured by both testing paradigms agree
with each other. The Landolt C test yielded slightly
better VA than ETDRS letters by 0.05 logMAR, albeit
insignificant (Supplement, Figure 1). Decreasing gray-
scale levels from 8 to 2 did not affect VA significantly.
All measured VA were at least 0.2 logMAR better than
the computed sampling limit for each pixel size. This
could be attributed to oversampling by scanning and
subjects looking for differences between undersampled
letters. Letter recognition was also better than sampling
limit and required only around 3 pixels per character
width for all pixel sizes, agreeing with the 3–7
phosphenes per letter width reported by other studies
(Dagnelie, Barnett, Humayun, & Thompson, 2006;
Sommerhalder et al., 2003; Sommerhalder et al., 2004).

Most subjects self-reported that near the limit, they
did not explicitly resolve the opening of a Landolt C.
They employed a strategy where they scanned the
object and identified the side of the blob that flickered
more, through which correctly determining the orien-
tation.

Sentence reading

With limited pixel size and FOV, reading speed with
simulated prosthetic vision (Figure 4, green and red
lines) was much slower than that with unobstructed
natural vision (blue line). Reading acuity (RA) for both
natural and prosthetic vision matched the correspond-
ing letter acuity. As the font size increased above VA
threshold, reading speed rapidly increased until the
maximum reading speed (MRS) was reached at the
critical print size (CPS). Further increase of the font
size was detrimental, as fewer words and letters could
fit in the FOV. For example, a nine-letter word of 1.58
font size (corresponding to 1.58 vertical height and
0.788 horizontal width allotted to each letter) can barely
fit into 78 FOV. For all pixel sizes, CPS was around
double the RA, and the smallest readable font size was
about 2.5 pixels per letter width, slightly less than the
letter acuity test and previous reports. The discrepancy
can be attributed to the fact that in reading tasks, the
loss in letter-by-letter information is compensated by
contextual clues.

Generally, smaller pixels allowed for denser sam-
pling, resulting in better RA, MRS, and CPS.
Meanwhile, an increased FOV did not significantly
affect RA, while raising reading speed with all font sizes
greater than CPS (t¼ 3.2, p ¼ 0.005 for MRS). The
numerical results are summarized in Table 2.

Figure 2. Face recognition task. (a) An example set of five faces

presented. Subjects were asked to pick the face that matches

the identity of the central person. Each face spanned

approximately 58 3 58. (b) Effects of the number of grayscale

levels and resolution on an image.

Figure 3. Letter acuity results (n¼ 13 for 30 and 60 lm pixels; n

¼ 19 for natural vision and 100 lm pixels). The leftmost data

point at 5 lm indicates visual acuity (VA) for natural vision of

the subjects. Error bars are presented in terms of SD.
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General trends with complex sentences were the
same, albeit at lower speed (Figure 4b and Table 3).
However, the effect of FOV on MRS became
insignificant (e.g., t ¼ 1.45, p ¼ 0.156 for 30 lm/128).
Counterintuitively, RA and CPS were slightly better
(smaller) for complex sentences than for simple ones,
possibly due to the word predictability in context-rich
sentences.

Face recognition

For all pixel sizes and grayscale levels, subjects could
achieve above 75% accuracy on average, significantly
higher than random choice (25%; Figure 5). While faces
were nearly instantaneously recognizable with natural
vision, more than 5 seconds was needed with simulated
vision, since scanning was required to observe all faces
due to limited visual field. Increasing number of
grayscale levels and reducing pixel size both improved
accuracy and time taken for face recognition. In Figure
5c, response times are normalized to that for 100 lm
pixels and eight grayscale levels. A decrease in pixel size
from 100 to 60 lm shortened the response time by
around 20% (p , 0.025 for all grayscale levels, two-

sample t test). There was no significant difference in
accuracy between 60 and 100 lm pixels.

Discussion

Letter acuity and reading speed are the most
common metrics for assessment of the quality of vision,
especially for low vision patients (Rubin, 2013). We
added a face recognition task since it is of high priority
for patients with atrophic AMD (Taylor, Hobby,
Binns, & Crabb, 2016). Many psychophysics studies
with simulated prosthetic vision were designed to
investigate potential capabilities of implants with
various numbers of pixels (Dagnelie et al., 2006; Hayes
et al., 2003; Irons et al., 2017; Shannon, 1992). Recent
clinical results with photovoltaic subretinal prosthesis
having 100lm pixels (PRIMA, Pixium Vision) con-
firmed that prosthetic acuity in AMD patients,
measured using Landolt C test, nearly matches the
pixel pitch (D. V. Palanker et al., 2019). Moreover,
recent measurements with 55 lm pixels in rats
demonstrated that grating acuity matches the pixel

Figure 4. Sentence reading speed in words per minute (WPM). (a) Simple sentences. (b) Complex sentences. Faded lines represent

individual measurements, and the bold lines represent the population mean.

Parameters

(pixels/FOV) RA (8) MRS (WPM) CPS (8)

100 lm /78 1.60 6 0.15 58 6 10 3.0 6 0.6

60 lm /78 0.81 6 0.08 77 6 16 1.7 6 0.7

30 lm /78 0.46 6 0.10 106 6 22 1.0 6 0.6

30 lm/128 0.45 6 0.06 141 6 27 1.1 6 0.2

Natural 0.14 6 0.01 201 6 40 0.36 6 0.07

Table 2. Reading acuity (RA), maximum reading speed (MRS),
and critical print size (CPS) for reading MNREAD sentences using
simulated prosthetic vision. Notes: All errors are reported as
standard deviation.

Parameters

(pixels/FOV) RA (8) MRS (WPM) CPS (8)

100 lm /78 1.63 6 0.11 52 6 7 2.7 6 0.4

60 lm /78 0.71 6 0.11* 73 6 10 1.7 6 0.5

30 lm /78 0.36 6 0.05* 102 6 18 0.80 6 0.15

30 lm /128 0.37 6 0.09* 121 6 33 0.87 6 0.25*

Natural 0.14 6 0.01 173 6 34 0.32 6 0.09

Table 3. Reading Acuity (RA), maximum reading speed (MRS),
and critical print size (CPS) for reading complex sentences using
pixelated vision. Notes: All errors are reported as standard
deviation. Asterisk (*) indicates p , 0.05 (two-sample t test)
compared to simple sentences with the same parameters.
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pitch of this size as well (Ho, Lorach, Huang, et al.,
2018). Development of three-dimensional electrodes
enables even smaller pixels, which might provide higher
resolution in the future (Flores et al., 2018). To assess
the minimum requirements of a system for restoration
of central vision in AMD patients sufficient for reading
and face recognition, we decided to evaluate its
simulated performance as a function of three param-
eters: pixel size, field of view (FOV), and number of
grayscale levels.

Previous studies with simulated vision used ‘‘phos-
phenated’’ images (Chen, Hallum, Lovell, & Suaning,
2005; Dagnelie et al., 2006; Thompson, Barnett,
Humayun, & Dagnelie, 2003). A dot with either a 2D-
Gaussian or flat profile was displayed to simulate an
activated pixel, while adjacent dots were spaced
according to the pixel pitch of the implant, resulting in
dark gaps between the simulated phosphenes (Chen,
Suaning, Morley, & Lovell, 2009). However, in the
PRIMA clinical study (D. V. Palanker et al., 2019),
when viewing various line patterns, patients reported
perceiving continuous lines, instead of a row of
disconnected phosphenes. Therefore, in our study, we
used tightly packed pixels, akin to those of a typical
consumer monitor, with no dark gaps in between.

Another difference between the current study and
previous ones is the choice of FOV. Since other
implants were designed for inherited retinal degenera-
tions which cause complete blindness, their functional
FOV could be as large as 228 (Luo & da Cruz, 2016).
However, geographic atrophy rarely exceeds 4 mm in
diameter, and in order to avoid any damage to the
adjacent healthy retina, the implant can cover only a
part of the scotoma. Hence, subretinal implants for
AMD are unlikely to exceed 3 mm in width,
corresponding to approximately 108 of the visual angle.
In the first feasibility study, the size of the PRIMA
implant is 2 mm, corresponding to about 78 of the

visual field (D. V. Palanker et al., 2019). Therefore, we
studied the effect of the FOV on reading speed in the
range of 78 to 128, while all the visual information for a
letter acuity or face recognition tasks was packed
within 58 of the visual angle.

When our subjects initially were unable to identify
the orientation of small Landolt C, they were asked to
guess without the experimenter affirming the answer.
Typically, the subjects could correctly detect an extra
line or two of the acuity chart, which explains their
performance exceeding the sampling limit by about 0.2
LogMAR, as can be seen in Figure 3. This strategy is
based on scanning the object and identifying a darker
or a flickering size of the unresolved blob, which is
sufficient for determining the Landolt C orientation.
Such strategy can be used for other tasks within a small
pool of target patterns, such as letter recognition, but is
unlikely to help in identification of unknown objects
and patterns.

It was repeatedly shown in the past that accuracy of
the face recognition is highly dependent on image
resolution, as summarized in (Irons et al., 2017). With
16 3 16 phosphenes per face over 9.48 visual field, and
10 levels of gray without scanning, subjects could
differentiate faces with up to 84% accuracy (Chang,
Kim, Shin, & Park, 2012), one of the highest reported.
In another study with 24 3 24 phosphenes within 188
FOV, accuracy was 65%, and it reached 88% with 323
32 arrays (Wang et al., 2014). In the current study,
focused on modeling small implants in the central
macula, we used substantially smaller images (face
spanning 58 3 58) with higher pixel density, while the
numbers of pixels per image were comparable to those
in previous studies. We found that nearly perfect
accuracy can be achieved at eight grayscale levels with
60 lm pixels, corresponding to a 24 3 24 grid. On top
of using tightly packed pixels and allowing for head
scanning, another likely explanation of improved

Figure 5. Face recognition. (a) Accuracy. (b) Response time. (c) Response time normalized to 100 lm pixels and eight grayscale levels.

Each dot represents an independent measurement. Error bars are presented in terms of SD.
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performance is that when the most prominent facial
features lie within the fovea (,2 mm in diameter),
subjects can spend less effort on scanning, and focus
more on evaluating the facial details.

Interestingly, forced-choice face differentiation in
our study required significantly fewer pixels than object
recognition in a previous study (Jung, Aloni, Yitzhaky,
& Peli, 2015). With 100 lm pixels, corresponding to
approximately 200 pixels per face, our subjects could
differentiate faces at .75% accuracy. This is much less
than about 560 pixels needed to recognize objects
covering about 108 visual field on a de-cluttered
background. The difference could be due to great
simplification of the task when a reference is immedi-
ately available, compared to naming an object from a
large pool of options. Another possibility is that faces
could be a surprisingly easy class of images to discern.
In a study involving different classes of objects and
animals (Li, Hu, Chai, & Peng, 2012), subjects
demonstrated .80% recognition rate on all images
using 24 3 24 pixels. However, with 16 3 16 pixels, no
one could recognize a car, but 90% could identify a
dog, which coincides with the accuracy and parameters
in our face recognition task. It is also important to keep
in mind that in our study the faces we presented on a
white background, while with a more cluttered natural
background, two to three times more pixels maybe
needed to achieve the same accuracy (Jung et al., 2015).

In conclusion, with simulated prosthetic vision in
AR glasses, subjects demonstrated letter acuity slightly
exceeding the sampling limit, and high efficacy in face
recognition even with 100 lm pixels. These results
indicate that photovoltaic subretinal implants with
100lm pixels currently available for clinical testing may
be helpful for reading and face recognition in patients
who lost central vision due to retinal degeneration. As
expected, smaller pixels significantly improve visual
performance, and therefore, further reduction in pixel
size may greatly enhance the outcomes in the future.

Keywords: prosthetic vision, augmented reality, visual
acuity, reading, face recognition
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