Supplemental materials

Details of the PAPA model

Stimuli are defined by the x and y-coordinates of their horizontal and vertical bars, denoted (for the target) as \((x_{tH},y_{tV})\) and \((x_{tV},y_{tV})\) and (for the flanker) as \((x_{fH},y_{fH})\) and \((x_{fV},y_{fV})\). For an interference zone with width \(\sigma_a\) and length \(\sigma_y\) (free parameters #1 and #2) we compute a pair of distance measures between the locations of the near-collinear and parallel bars. For end-flankers these are

\[
d_{\text{colinear}} = d(x_{t,V},y_{t,V},x_{t,V},y_{t,V}) \quad \text{and} \quad d_{\text{parallel}} = d(x_{t,H},y_{t,H},x_{t,H},y_{t,H})
\]

and for side-flankers they are:

\[
d_{\text{colinear}} = d(y_{t,H},x_{t,H},y_{f,H},x_{f,H}) \quad \text{and} \quad d_{\text{parallel}} = d(y_{t,V},x_{t,V},y_{f,V},x_{f,V})
\]

where \(d()\) is a two-dimensional Gaussian weighted measure of distance:

\[
d(a_1,b_1,a_2,b_2) = \exp\left(\frac{(a_1 - a_2)^2}{2\sigma_x^2}\right) \exp\left(\frac{(b_1 - b_2)^2}{2\sigma_y^2}\right)
\]

From these measures we compute, on a trial-by-trial basis, the magnitude of crowding, independently for collinear and parallel features, e.g.:

\[
w_{\text{colinear}} = \begin{cases} w_{\text{average}} (1 - d_{\text{colinear}}) & U(0,1) < w_{\text{prob}} (1 - d_{\text{colinear}}) \\ 0 & \text{otherwise} \end{cases}
\]

where \(U(0,1)\) is a uniform random variable in the interval (0,1), \(w_{\text{peak}}\) is a free parameter (#4) that – in combination with the distance measure - weights the probability that crowding will occur \(w_{\text{average}}\) is a free parameter (#3) modulating the strength of the interference zone on the magnitude of crowding. Having computed the weighting parameters \(w_{\text{colinear}}\) and \(w_{\text{parallel}}\) for the influence of the flanker, we compute the predicted position of the critical features within the crowded target using a standard weighted average. For end-flankers these are:

\[
x_{\text{colinear}} = w_{\text{colinear}}(x_{t,V} + N(0,\sigma_{\text{noise}})) + (1 - w_{\text{colinear}})(x_{t,V} + N(0,\sigma_{\text{noise}}))
\]

\[
y_{\text{parallel}} = w_{\text{parallel}}(y_{t,H} + N(0,\sigma_{\text{noise}})) + (1 - w_{\text{parallel}})(y_{t,H} + N(0,\sigma_{\text{noise}}))
\]
where \(N(0,\sigma_{\text{noise}}) \) refers to a normal deviate with zero-mean and standard \(\sigma_{\text{noise}} \) which sets the level of additive noise applied to the encoding of bar-position (free parameter \#5). Note that when \(w_{\text{colinear}} \) falls to zero, these expressions return the original target-bar locations (corrupted only by additive noise). For a side-flanker predicted bar-locations are:

\[
x_{\text{parallel}} = w_{\text{parallel}} (x_{f,V} + N(0,\sigma_{\text{noise}})) + (1 - w_{\text{colinear}}) (x_{t,V} + N(0,\sigma_{\text{noise}}))
\]

\[
y_{\text{colinear}} = w_{\text{colinear}} (y_{f,H} + N(0,\sigma_{\text{noise}})) + (1 - w_{\text{colinear}}) (y_{t,H} + N(0,\sigma_{\text{noise}}))
\]

Finally, in order to generate a predicted response from these position measures we determine the quadrant that their resulting angle (the arctangent of the \(y \) and \(x \) values) falls into and classify the result as an upwards, rightwards, leftwards or downwards facing 'T' accordingly.